
Variants in ZFHX3 are associated
with atrial fibrillation in
individuals of European ancestry
Emelia J Benjamin1–3,45, Kenneth M Rice4,45, Dan E Arking5,45,
Arne Pfeufer6,7,45, Charlotte van Noord8–10,45, Albert V Smith11,45,
Renate B Schnabel1,12, Joshua C Bis13, Eric Boerwinkle14,
Moritz F Sinner15, Abbas Dehghan8, Steven A Lubitz16,17,
Ralph B D’Agostino Sr1,18, Thomas Lumley4, Georg B Ehret5,
Jan Heeringa8, Thor Aspelund11,19, Christopher Newton-Cheh1,17,20,
Martin G Larson1,18, Kristin D Marciante21,22, Elsayed Z Soliman23,
Fernando Rivadeneira8,24, Thomas J Wang1,25, Gudny Eirı́ksdottir11,
Daniel Levy1,2,26, Bruce M Psaty13,21,27–29, Man Li30,
Alanna M Chamberlain31, Albert Hofman8, Ramachandran S Vasan1,2,
Tamara B Harris32, Jerome I Rotter33, W H Linda Kao30,
Sunil K Agarwal34, Bruno H Ch Stricker8,24,35, Ke Wang36,
Lenore J Launer32, Nicholas L Smith27,37, Aravinda Chakravarti5,
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Anna Köttgen30, Cornelia M van Duijn8, Thomas Meitinger6,
Martina Mueller15,41, Siegfried Perz42, Gerhard Steinbeck15,
H-Erich Wichmann41,43, Kathryn L Lunetta1,36,45,
Susan R Heckbert27,29,45, Vilmundur Gudnason11,19,45,
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We conducted meta-analyses of genome-wide association
studies for atrial fibrillation (AF) in participants from five
community-based cohorts. Meta-analyses of 896 prevalent
(15,768 referents) and 2,517 incident (21,337 referents)
AF cases identified a new locus for AF (ZFHX3, rs2106261,
risk ratio RR ¼ 1.19; P ¼ 2.3 � 10�7). We replicated this
association in an independent cohort from the German AF
Network (odds ratio ¼ 1.44; P ¼ 1.6 � 10�11; combined
RR ¼ 1.25; combined P ¼ 1.8 � 10�15).

With increasing longevity of individuals in developed countries,
late-onset chronic cardiovascular diseases such as AF have become
important public health problems. AF is an electrical disorder of the
heart’s upper chambers characterized by an irregular heart rhythm.
The overall lifetime risk of AF is almost 25% in the US and Europe1,2.
Furthermore, the incidence of AF is increasing over time; in the US
it is projected that up to 15.9 million individuals may be affected
by 2050 (ref. 3). The growing number of individuals with AF is of
concern because of its association with significantly increased risks
of stroke, heart failure and death4.

AF is a complex disease with many etiologies, including cardio-
vascular disease and its risk factors. Families demonstrating mendelian
inheritance of AF have been reported, most frequently in individ-
uals with lone AF (early-onset AF without structural heart disease)5.
Recently it was reported that, even for typical forms of AF, individ-
uals with an affected relative are at higher risk of AF6. Moreover,
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a genome-wide association study (GWAS) identified SNPs in the
chromosome 4q25 region that are associated with increased AF risk7.

We hypothesized that additional common genetic variation contri-
butes to the development of AF. We conducted and combined meta-
analyses of prevalent AF and incident AF, using existing GWAS data
from the Cohorts for Heart and Aging Research in Genomic Epidemi-
ology (CHARGE) AF Consortium. CHARGE included the following
five community-based cohorts8: Age, Gene/Environment Susceptibility
Reykjavik Study (AGES); Atherosclerosis Risk in Communities (ARIC);
Cardiovascular Health Study; Framingham Heart Study; and Rotterdam
Study. Genotyping inclusion criteria were unbiased toward AF, as
genotyping was performed as a core effort for many phenotypes in
each cohort. Study design and genotyping features are in Supplemen-
tary Tables 1 and 2. Genotypes for more than 2.5 million SNPs were
imputed within each study using reference genotype data and linkage
disequilibrium patterns from the HapMap CEU population (Supple-
mentary Methods).

Our community-based participants were middle-aged to elderly,
with mean ages at DNA collection from 57 (ARIC) to 76 (AGES) years
(Supplementary Table 3). To assess potential population stratifica-
tion, we computed genomic inflation factors (l) of meta-analysis
results: l was 1.005 for prevalent AF, 1.014 for incident AF and 1.026
for combined prevalent-incident AF (Supplementary Table 2 provides
l by cohort and analysis). The observed versus expected P value
distributions (quantile–quantile plots) and Manhattan plots of –log10

P values for separate prevalent and incident AF analyses are displayed
in Supplementary Figures 1 and 2.

We prespecified genome-wide significance as P o 5 � 10�8,
corresponding to significance at 5% adjusting for approximately one
million independent tests as estimated in HapMap samples of
European ancestry. To prioritize follow-up genotyping, we required
that SNPs have P o 4 � 10�7 (corresponding to one expected false
positive per GWAS) and that at least six of nine analyses (out of four
prevalent and five incident AF analyses) contribute results for the SNP,
to reduce possible false-positives due to poor imputation.

The quantile-quantile plot and Manhattan plot of the meta-analysis
of combined prevalent and incident AF are depicted in Supplemen-
tary Figure 3. We replicated the association with a previously reported
chromosome 4 locus7 (rs17042171, P ¼ 6.0 � 10�27; Table 1 and

Supplementary Fig. 4), which was approximately 150 kb telomeric to
the transcription factor gene PITX2.

SNP rs2106261 on chromosome 16q22, located in an intronic region
of transcription factor ZFHX3 (previously known as ATBF1), showed
suggestive evidence of association (Table 1, combined prevalent-incident
P ¼ 2.3 � 10�7, Fig. 1). Results were consistent in the separate pre-
valent (P ¼ 9.0 � 10�6) and incident (P ¼ 7.9 � 10�4) AF analyses
(Supplementary Table 4 provides cohort-specific estimates). We repli-
cated the association between SNP rs2106261 and AF in a large
independent cohort, the German AF Network (AFNET), consisting of
2,145 cases and 4,073 controls (odds ratio ¼ 1.44, P ¼ 1.6 � 10�11;
Table 1). In a meta-analysis of the results from the discovery (CHARGE
community AF) and replication (German AFNET) studies, rs2106261
was significantly associated with AF (RR 1.25, P¼ 1.8 � 10�15; Table 1).
ZFHX3 appears to regulate myogenic9 and neuronal differentiation10.
ZFHX3 has been reported to be a tumor suppressor gene in several
cancers11, and recently SNPs in ZFHX3 have been associated with
susceptibility to Kawasaki disease12. Although the function of ZFHX3
in cardiac tissue is unknown, it is expressed in mouse hearts13.

Another significant association signal was on chromosome 1p36
within MTHFR (rs17375901, P ¼ 4.6 � 10�8), which encodes
5,10-methylenetetrahydrofolate reductase. The association with the
MTHFR locus was not confirmed in independent subjects from the
AFNET cohort (Table 1). The initial MTHFR finding may be a false
positive result. However, the region may merit further investigation
because MTHFR is in linkage disequilibrium with NPPA, the atrial
natriuretic peptide gene (Supplementary Fig. 4); a NPPA frameshift
mutation has been described in a family with AF14.

We acknowledge several study limitations. Although our findings
were generally consistent, we observed some between-analysis hetero-
geneity in effect sizes (P ¼ 0.01), possibly arising from variation in
cohort participant characteristics, duration and etiology of AF, low
study-specific precision, subtle locus-specific population stratification
and population differences in underlying haplotype structure. Popula-
tion stratification at a larger scale did not seem to have a substantial
impact on our findings as we did not observe inflation of the genomic
control factors in the study-specific analyses or the meta-analyses.
We note that for the previously validated PITX2 locus we observed
between-study heterogeneity. Thus, heterogeneity appears to be a

Table 1 Summary of CHARGE AF GWAS meta-analysis signals with P r 4 � 10�7 and German AFNET replication analysis

Locus

Combined analysis of prevalent and incident AF

896 prevalent cases, 15,768 referents

2,517 incident cases, 21,337 referents

German AFNET

2,145 cases,

4,073 controls

Meta-analysis

CHARGE community AF and

German AFNET results

SNP

Nearby gene

Chromosome

position

Minor/

major

allele

Minor allele

frequencies:

CHARGE AFNET

Overall B

± s.e.m. Relative riska

Meta

P value

Heterogeneity

P valueb

Overall B

± s.e.m. Odds ratio P value

Overall B

± s.e.m. Relative risk P value

rs17042171c

PITX2

4

111927736

A/C 0.122 0.156 0.37 ± 0.03 1.45 6.0 � 10�27 0.01 0.90 ± 0.06 2.46 6.9 � 10�51 0.50 ± 0.03 1.65 3.9 � 10�63

rs2106261

ZFHX3

16

71609121

T/C 0.174 0.192 0.17 ± 0.03 1.19 2.3 � 10�7 0.01 0.36 ± 0.05 1.44 1.6 � 10�11 0.23 ± 0.03 1.25 1.8 � 10�15

rs17375901

MTHFR

1

11775103

T/C 0.053 0.058 0.29 ± 0.05 1.34 4.6 � 10�8 0.45 0.04 ± 0.09 1.04 0.68 0.23 ± 0.05 1.26 5.9 � 10�7

See Supplementary Table 3 for cohort-specific signals of top findings. For all odds, hazard and risk ratios, the reference group is the major allele homozygote; risk is expressed per each additional
copy of the minor allele. B, regression estimate (log odds ratio for prevalent, log hazard ratio for incident). aCombination of odds and hazard ratios from four prevalent AF and five incident AF
analyses. bP value for Cochran’s statistic of heterogeneity of effect across the four prevalent and five incident analyses. cAFNET results for chromosome 4 were available for rs2200733, a perfect
proxy for rs17042171 (r2 ¼ 1) in HapMap CEU samples. In CHARGE, the previously reported chromosome 4 SNP, rs2200733, for combined prevalent and incident AF had risk ratio ¼ 1.44,
P ¼ 9.3 � 10�27; for prevalent AF, odds ratio ¼ 1.59; P ¼ 3.3 � 10�11; for incident AF, hazard ratio ¼ 1.40, P ¼ 1.2 � 10�17.
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general feature of even the strongest genome-wide findings for AF,
and it remains to be addressed in follow-up studies. In addition, our
findings may not be generalizable to other populations. It also was not
possible to perform a pooled analysis using participant-specific data
given the restrictions imposed by the Institutional Review Boards at
some study sites. Furthermore, there is a potential for survival bias in
the prevalent AF analysis if the variant is associated with both AF onset
and lethality; in this situation, individuals who die shortly after AF
onset might not survive until DNA collection. Nonetheless, a moderate
association was present in prevalent, incident, and combined AF meta-
analyses for both the validated chromosome 4q25 and the new
chromosome 16q22 loci. Another limitation is that, beyond single
SNPs, our study did not analyze patterns of haplotypes, and thus this it
may not have captured complex haplotype associations. However, our
use of imputation to the HapMap does take advantage of available
linkage disequilibrium information. Finally, we recognize that we likely
have identified variants in linkage disequilibrium with causal variants
rather than the specific functional variants; the pathophysiology by
which locus variation contributes to AF risk remains unknown.

The strengths of our approach include the use of five large
community-based cohorts, whose participants were not selected for
phenotypic characteristics, thereby enhancing the generalizability of
our findings. The robustness of the chromosome 16q22 result is
strengthened by its documentation in samples ascertained with
different study designs, including case-control and cohort studies.

In summary, by examining GWAS data for AF in five community-
based cohorts, we replicated the previously reported association
with chromosome 4q25 variants and we identified a new locus on
chromosome 16 in a gene encoding the transcription factor ZFHX3.
We provided confirmatory support for the ZFHX3 finding by
replicating our findings in a large independent study of AF. Further

studies are needed to elucidate functional variants and mechanisms
by which the 16q22 locus predisposes to AF.

URLS. AGES, http://www.hjarta.is/english/ages; ARIC, http://www.
cscc.unc.edu/aric/; Cardiovascular Health Study, http://www.chs-nhlbi.
org/; Framingham Heart Study, http://www.framinghamheartstudy.
org/about/index.html; Rotterdam Study, http://www.epib.nl/ergo.htm;
BIMBAM, http://stephenslab.uchicago.edu/software.html; EIGENSTRAT,
http://genepath.med.harvard.edu/~reich/Software.htm; GenABLE and
ProbABEL, http://mga.bionet.nsc.ru/~yurii/ABEL/; HapMap, http://
hapmap.org/; MACH v1.0.15/16 (http://www.sph.umich.edu/csg/abecasis/
MaCH/index.html); PLINK, http://pngu.mgh.harvard.edu/purcell/plink.

Note: Supplementary information is available on the Nature Genetics website.
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Figure 1 Regional association plots for signal loci on chromosome 16.

At each SNP location (genomic position, NCBI build 36) we plot the

–log10 P value from combined analysis of incident and prevalent AF.

Symbol colors indicate the strength of linkage disequilibrium derived

from CEU HapMap build 22: strong (red, r2
Z 0.8), moderate (orange,

0.5 r r2 o 0.8), weak (yellow, 0.20 r r2 o 0.5) and low (white, r2 o 0.2).
Estimated recombination rates are represented by pale blue lines and gene

annotations by dark green arrows.
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In the version of this article initially published online, the name of author H.-Erich Wichmann was incorrectly given as Hans-E. Wichmann and 
this author’s affiliation at the Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany, 
was missing. The error has been corrected for the print, PDF and HTML versions of this article.
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